tg-me.com/ds_interview_lib/264
Last Update:
Почему XGBoost в среднем показывает производительность лучше, чем Случайный лес (Random Forest)?
На самом деле оба алгоритма могут давать хорошие результаты, но XGBoost чаще используется в ML-соревнованиях для достижения наивысшего балла. У этого алгоритма есть несколько полезных свойств:
▫️XGBoost включает в себя механизмы регуляризации. Это помогает уменьшить переобучение и улучшить обобщающую способность модели.
▫️XGBoost строит деревья последовательно: каждое новое дерево исправляет ошибки, сделанные предыдущим.Random Forest же строит деревья параллельно с использованием метода усреднения. Последовательная коррекция ошибок в XGBoost часто приводит к лучшей производительности на многих задачах.
▫️У XGBoost более гибкие гиперпараметры, что улучшает его настройку под датасет.
#машинное_обучение
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/264